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The solitary wave on a stream with an arbitrary 
distribution of vorticity 

By T. BROOKE BENJAMIN 
Department of Engineering, University of Cambridge 

(Received 17 April 1961) 

The theoretical work reported herein makes a departure from the many previous 
analyses of the solitary wave which have treated the wave as an example of 
irrotational fluid motion. The present analysis is of more general scope in that 
it covers the whole category of examples in which the wave may propagate in 
either direction on a horizontal stream whose primary velocity distribution U( y) 
is an arbitrary function (i.e. there is no restriction on the extent of the variations 
of U ( y ) ) .  An approximate form of the wave profile is found in general to be 
a sech2{(z -c t ) /b) ,  as it is according to previous theories applicable to the wave 
on a uniform stream, but the relationships amongst the wave amplitude a, the 
length scale b, and the two propagation velocities c (positive downstream 
and negative upstream) depend in complicated fashion on the form of U ( y ) .  

1. Introduction 
As far as is known, all of the many previous theoretical investigations of the 

solitary wave in a homogeneous fluid have proceeded on the assumption of 
irrotational motion.? Analyses made on this basis may apply very accurately 
to a real solitary wave advancing into still water, because then the effect of visco- 
sity on the fluid motion generated by passage of the wave may be confined to thin 
boundary layers on the channel bottom and sides. For a wave that occurs on 
running water, however, the assumption of irrotational motion is essentially 
artificial since the velocity of the stream is thereby implied to be the same at all 
depths: that is, the effects of friction on the primary flow have to be ignored, as 
well as its effects on the wave. 

As a contribution to the understanding of the latter case, the analysis presented 
in this paper covers the problem of a solitary wave propagating along a non- 
uniform parallel stream, such as might develop in a long channel when vorticity 
produced by frictional action at the boundary becomes diffused over the whole 
cross-section. The analysis in fact deals comprehensively with the generalized 
theoretical problem in which the distribution of horizontal velocity with depth 
is arbitrary, being unrestricted both as to form and as to the magnitude of the 
velocity variations with depth. A two-dimensional problem is formulated, 

t Peters & Stoker (1960) have investigated the solitary wave in a liquid with con- 
tinuous density stratification, so dealing with a case where the wave motion is rotational. 
In  their theoretical model the only vorticity is that generated by the wave, and SO the 
basic difficulty of the present problem is not encountered. Nevertheless some resemblances 
between their analysis and the present one may be noted. 
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relating practically to a rectangular channel whose breadth considerably exceeds 
the depth of water; and justification for a frictionless theoretical model is given in 
Q 2. The equations of motion and boundary conditions respective to a rotational 
flow with a free surface under gravity are solved to an approximation which 
comprises, in effect, a ‘second-order shallow-water theory’ (cf. Stoker 1957, 
p. 343), and which therefore compares with the approximations to the ‘irrota- 
tional’ solitary wave found originally by Boussinesq (1871) and Rayleigh (1876), 
and alternatively derived by Keulegan & Patterson (1940), Keller (1948), Stoker 
(1957, Q 10.9) and others. The method of solution is open to the development of 
successive further approximations, even though the work would become much 
more complicated than the fairly simple task carried through here; and the 
precise view that the methods affords regarding the magnitude of the residual 
error gives security to the present approximation. Since in this last respect the 
theory appears to present essentially the same situation as does the theory of the 
irrotational solitary wave, the question of convergence does not seem particu- 
larly urgent. The higher-order approximations that have been found on the basis 
of potential theory, for instance by McCowan (1891), Weinstein (1926), Packham 
(1952) and Long (1956), all strongly suggest the convergence of approximate 
methods when the wave amplitude is sufficiently small, and a rigorous proof of 
convergence for sufficiently small amplitudes-hence a proof that a solitary 
wave of strictly permanent form really exists mathematically-was established 
by Friedrichs & Hyers (1954). 

When approached by orthodox perturbation methods, problems concerning 
surface waves on rotational flows are generally rather difficult; and the very 
small numbers of papers on the subject contrasts remarkably with the vast 
literature on irrotational wave motions. Notably, Thompson (1949) and Bi6sel 
(1950) have investigated the relation between the propagation speed and wave- 
length of infinitesimal sinusoidal waves, and Burns (1953) has demonstrated 
various properties of waves whose lengths are extremely long compared with the 
depth of the stream along which they are supposed to travel. In  particular, Burns 
obtained a general formula for the speed of infinitesimal long waves, and, as 
might be expected, this formula is recovered by the present analysis upon im- 
posing a condition that the amplitude of the solitary wave becomes indefinitely 
small, which also makes its length indefinitely large [as a property in common 
with irrotational solitary waves (cf. Ursell 1953 or Benjamin & Lighthill 1954, 
p. 449), the parameter amplitude x (length)2 + (depth)3 is found to be approxi- 
mately a constant, in fact not much different from unity, over the whole spectrum 
of solitary waves possible upon a stream with given non-uniform velocity dis- 
tribution]. However, the methods previously applied to waves on rotational 
flows appear to offer little possibility of extension to the present problem, least 
of all when it is generalized to  arbitrary vorticity distributions, and a novel 
method of analysis has had to be found. As regards its essentials which are 
explained in the first part of $4, the method may have some general interest 
outside its present context, since evidently it might be useful in other practical 
problems concerned with disturbed rotational flows (one very simple incidental 
application is mentioned in a footnote). 
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There is, nevertheless, one example of the present general problem that admits 
treatment by an adaptation of existing methods: this is the case of a solitary 
wave on a stream with constant vorticity. An analysis based on an extension of 
Rayleigh’smethod (1876) is outlined in an appendix, and its results are compared 
with those according to the general analysis given in the body of the paper. 

2. Preliminary considerations 
In  the theory friction and turbulence are not considered, except implicitly 

in so far as they determine the primary velocity distribution, and the stream is 
represented as a laminar flow of incompressible inviscid fluid having a prescribed 
distribution of total head and vorticity over the streamlines. Although in a real 
fluid the velocity must vanish on the channel bottom, and the rate of shearing 
must vanish at the free surface, these conditions do not have to be applied to the 
frictionless model; they can be optionally allowed in specifying the primary flow 
-provided the difficulty explained below regarding the first condition does not 
arise-but they need to be relaxed in the analysis of the disturbed flow under a 
wave. As regards the applicability of the theory in practice, the essential assump- 
tion is that the length scale of the wave motion is considerably smaller than the 
lengths to be associated with ‘changes in boundary-layer structure’ (i.e. the 
lengths over which changes in flow conditions may be accommodated by adjust- 
ments of the primary velocity distribution by frictional action), so that the 
dynamical effects of the wave are principally those due to distortion of the 
prevailing vorticity field. This principle on which short-scale localized motions in 
a shearing flow-whose vorticity owes in the first place to friction-may be 
treated as frictionless is a familiar and well-tried one, and it can be applied with a 
fair degree of confidence to the present problem. 

Accepting the existence of the solitary wave as a solution to the corresponding 
problem of irrotational motion, one may readily comprehend the possibility of 
a similar wave on a non-uniform stream, provided the flow is more than margin- 
ally subcritical (i.e. mean velocity < C,, where C, = ,/(g x depth) is the speed, 
relative to the mean flow, of infinitesimal waves of extreme length). The special 
attribute of the subcritical case is that a solitary wave, having a relative speed at  
least as large as C,, will travel either upstream or downstream at a fair speed 
relative to every one of the strata within the primary flow. That is to say, in a 
frame of reference travelling with the wave the apparent velocity of the fluid 
will be of the same sign, and not particularly small, a t  all depths (e.g. as indicated 
in figure 1). Hence, considering the state of steady motion observed in the 
moving frame of reference, one can see how the dynamical conditions for a steady 
wave might be satisfied in much the same way as for the corresponding irrota- 
tional flow: instead of the condition of zero vorticity everywhere, there is now 
the condition that the vorticity along each streamline should remain constant, 
and the condition of constant total head along the free streamline is the same as 
before even though the respective value differs from the values of total head on 
the other streamlines. 

A difficulty arises, however, if the stream is near the critical condition and if 
the primary velocity distribution U(y) falls to zero or to a small value at the 
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channel bottom y = 0. The absolute velocity c- of a wave propagating against 
the stream may then be quite small in comparison with the mean flow velocity, 
or may be made negative (i.e. the wave may be carried downstream) if the flow 
is supercritical. In  this case the velocity W(y) = c-+ U ( y )  of the fluid relative 
to the wave may be very small, or may become negative, near the channel bottom; 
consequently it may be impossible to satisfy the condition of constant total head 
on streamlines near the bottom. This matter may be understood more clearly 
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FIGURE 1. Definition sketches showing the velocity profile of the primary flow measured 
with respect to axes moving with the wave: (a)  upstream propagation with c c 0; 
( b )  downstream propagation with G > 0. 

by supposing, as a first approximation, that the pressure p in the fluid is every- 
where the hydrostatic value. Correspondingly, a t  all depths below a point on 
the free surface which is raised a height 7 by the wave, the ‘piezometric head’ 
( p / p )  + gy is increased by an amount gy above its value in the undisturbed stream. 
To maintain constant total head with respect to the moving frame of reference, 
this increase must be balanced by a reduction in velocity head, which is of course 
a positive definite quantity (i.e. with lower limit O+ at stagnation points). We 
see therefore that a steady wave becomes impossible-at least without a region 
of stagnation within the flow-if at any depth the initial velocity head +Wz(y) is 
amaller than gym, where y m  is the maximum elevation of the wave; and as an 
extreme case, no wave is possible for which W(y) vanishes at any depth-a 
conclusion that was reached by Burns (1953) in his study of infinitesimal waves. 
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For example, no standing wave (c- = 0) would be found for a stream with 
U(0)  = 0, although according to the irrotational-flow theory standing waves 
definitely exist over a certain range of supercritical uniform flows. 

In  such cases where a continuous steady flow appears to be ruled out, it might 
still be possible to find a steady wave relative to which the flow separates from 
the channel bottom and there is a region of stagnant fluid (i.e. the region is carried 
along by a travelling wave). In  practice separation probably does sometimes 
occur under fairly large standing waves, or under slowly moving ones, and so a 
study of the stagnation effects in question might have some practical bearing. 
However, this rather special aspect of the over-all problem does not warrant 
further attention in this paper, where the aim is to contend with the more 
general difficulties of analysing the solitary wave on a non-uniform stream. The 
theory is therefore developed under the restriction that at all depths W ( y )  is 
sufficiently large to avoid stagnation effects. 

3. Formulation of the mathematical problem 
We adopt a scheme of dimensionless variables in which the depth h of the 

undisturbed stream is taken as the unit of length and a certain datum U,, which 
need not be specified explicitly, is taken as the unit of velocity. Thus, for instance, 
the co-ordinates ( x ,  y )  defined in figure 1 measure distances as multiples of h, 
and all variable velocities are symbolized as multiples of U,. The symbol g here 
denotes the gravitational acceleration as a multiple of Uilh; that is, g = g*h/U: 
if g* is the dimensional quantity. 

The wave is supposed to occur upon a horizontal stream in which, when 
undisturbed by the wave, the velocity distribution is U ( y )  everywhere (see 
figure 1). On the assumption that the wave propagates without change of form, 
the problem can be treated as one of steady motion by taking axes ( x ,  y )  moving 
horizontally with the wave. Thus, letting c denote the absolute velocity of propa- 
gation downstream, we have that the primary fluid velocity in the moving frame 
of reference is W ( y )  = U(y) -c  in the direction of x.  For a wave propagating 
upstream, as indicated in figure 1 (a) ,  c is negative according to this definition, 
so that W ( y )  is the sum of two positive components. In  the case of downstream 
propagation, W ( y )  will be negative as indicated in figure 1 (b ) .  In  the develop- 
ment of the theory there is no need to distinguish between these two cases, each 
of which is covered by the appropriate evaluation of W ( y )  in the final results. 

We introduce a stream-function @ in terms of which the velocity components 
u and v, parallel to x and y respectively, and the vorticity 6 are given by 

and 

The bottom of the channel may be defined as the streamline 31. = 0, and the kine- 
matical condition for the wave profile to be stationary is that the free surface is 
also a streamline. If ~ ( x )  denotes the elevation of the wave above the level of the 
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undisturbed free surface, i.e. above y = 1, the kinematical surface condition may 
be expressed by the equation, 

of which the right-hand side is the value a t  y = 1 of the known stream-function 

$(x, 1 +r)  = Wl), (2) 

for the primary flow. To specify that the wave must be a solitary wave, not for 
instance a train of periodic waves, we impose the further condition that 

r ( x )  -+ 0, $(x, y) --f Y(y) for x -+ f co. (4) 
The dynamical condition for steady motion is that the vorticity must be con- 

stant along each streamline (Lamb 1932, p. 244), and here this condition may be 

expressed formally as az$ az$ __ 
&2 +ay2 = C " W ,  

where c,, is the function defined by the property that c,-,(yP) gives the vorticity of 
the primary stream. [Note that although this function is determined exactly by 
any assumed velocity distributionW(y), it cannot be worked out explicitly except 
in a few particularly simple cases. For example, if 

which is a case discussed later, we have Y = cy + Uyk+l and co = k(k + 1) Uyk-1; 
thus, for k = 3 and G =# 0 as considered later, the task in question is clearly 
impossible.] 

The total head H defined as follows is also constant along each streamline 

(6) (Lamb 1932, p. 21): 

(Here p is the pressure measured in units of U i  times the density of the fluid.) 
By reference to the Eulerian equations of motion, from which both ( 5 )  and (6) 
are obtained by integration, it is easily seen that the property expressed by (6) 
is either entirely concomitant with ( 5 )  or a t  most, as in our case, requires an 
additional condition to be satisfied on only one streamline. If the upper boundary 
of the fluid were solid instead of free, then (6) would be satisfied automatically in 
consequence of ( 5 )  being satisfied, essentially because the flow is then determined 
completely by the kinematical conditions at known boundaries and the pressure 
can adjust to the values determined by (6). In  the present problem, however, the 
position of the wave surface is not known initially; and since it is a free surface, 
the wave is dynamically possible only if the solution to ( 5 )  makes the pressure 
there constant. Hence, expressing the fact that both H and p are the same 
everywhere on the surface, including points so remote from the wave that y -+ 1 
and (uz+w2) + Wz(l), we get from (6) the dynamical surface condition 

W(y) = c + (1 + k) By", 

H($) = &(uZ + v2) +I, + gy. 

W z ( l ) -  (u2+w2)y=1+T = 2gy(x). (7) 

Equation ( 5 )  for $ together with the boundary conditions (2), (4) and (7) 
[also $(O) = 01 define the mathematical problem. In previous theories of the 
solitary wave, it has been assumed that W = const. and therefore co = 0. Equa- 
tion ( 5 )  confirms that $ is then a harmonic function, being in fact the conjugate 
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of a velocity potential, and this property has been used in various ways to derive 
approximations to the wave of finite amplitude. None of the previous methods 
appears capable of straightforward extension to account for an arbitrary distri- 
bution of vorticity, and the following new approach has had to be devised. 

4. Analysis 
By the assumption explained a t  the end of 0 2, W(y) has the same sign through- 

out the range 0 < y < 1, and therefore Y(y) is a monotonically varying function; 
furthermore, the bounding streamline $ = 0 is assumed to remain attached to the 
bottom. Hence, over any vertical section z through the flow, the height of the 
streamlines can be taken to be a single-valued function of $. Accordingly, the 
whole flow can be represented uniquely by the transformation 

Introducing a suffix notation for partial differentiation, we now have that the 
velocity components are u = l/y+, v = yx/y$, and the corresponding expression 
for the vorticity is readily found to be 

Y = Y(Zt$). (8) 

Setting this expression equal to co($), as in equation ( 5 ) ,  we obtain an equation 
for y(z, $) which, together with the boundary conditions appropriately trans- 
formed, comprises an alternative statement of the mathematical problem. Like 
(5), this is a second-order non-linear equation of first degree; but the equation is 
inherently simpler than (5) ,  despite its more complex form, since the coefficient 
c,,($) is now a function of an independent variable. 

The equation for y(z, $) is still hardly tractable, however, and the progress of 
the analysis depends essentially on the next step, which is to transform the 
independent variable 4. We write 

where YP is the stream-function for the primary flow, as defined by (3). Thus, the 
new variable s, which varies between zero on the bottom and unity on the free 
surface, is equal to the height which the respective streamline approaches 
asymptotically at the outskirts of the wave; and since Y varies monotonically and 
there is no separation, the value of s specifies 4 uniquely. Using the fact that 
d$lds = W(s)  by definition, we get at once for the velocity components and the 
vorticity 

$ = V S ) ,  (10) 

1 Yx u = W(s)-,  v = W(s) - ,  
Ys 

5 = - 3 [W(s) {YxzY: - 2YxsYxYs + YSSU + Y 3 >  - W’(S) Y# + Y 3 1 .  
Ys i (11) 

1 

Ys 

Now, since the streamlines are determined by s alone, and since s = y in the 
primary flow infinitely remote from the wave, a simple equivalent of the dynami- 
cal equation ( 5 )  is therefore 

that is, we have W‘(s) = go($) to express the property that the initial vorticity 
W’(y) is conserved along each streamline as it is displaced by the wave from its 

g = W ( s ) ;  (12) 
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initial height y. Equating W'(s) to the previous expression for 5 and multiplying 
by ys" to eliminate fractions, we get as the equation for y(x, s)f 

As is to be expected, a particular integral of this equation is y = s, corresponding 
to the primary flow. 

The problem is thus reduced to finding the solution y(x, s) of (13) subject to 
the following boundary conditions: first, the kinematical conditions 

secondly, the asymptotic conditions corresponding to (4) 

and, thirdly, the dynamical surface condition ( 7 )  which, by substitution from 

y(x, 0) = 0, y(x, 1) = 1 +TW; (14) 

~ ( x )  + O ,  y(x,s) -+s for x+ +a; (15) 

If it  were required to find explicitly the whole velocity field under the wave, the 
solution y(x, s) would need to be inverted to give s(x, y), which upon substitution 
into (10) would give @(x, y). However, this step is unnecessary at present where 
the object is only to find the wave profile. 

We first observe that if the x-variations of y were sufficiently small, equation 

a second-order ordinary differential equation whose general solution is easily 
found. The solution satisfying the condition y = 0 for s = 0 is 

(13) would reduce to W(s)y,+ W'(s) (ys" - ys} = 0, (17) 

where 2A is an arbitrary cons tan tor  a very slowly varying function of x if 
(18) is to be interpreted as an approximate solution of (13).$ This expression 

t It is worth noting incidentally that the equivalent equation for s(z, y) is 
w(S) {Szz -k aY,) -k w'(S) {S: -k 8: - 1) = 0. 

[This is a special case of an equation derived by Long (1953, equation (12) for yo) ; his 
equation allows for density stratification in the fluid and reduces to the present form when 
density is made constant.] Though neater than (13),  this equation presents the grave 
difficulty that the coefficients W(s) ,  W ( s ) ,  which are to remain arbitrary in the analysis 
of the general problem, are functions of the dependent variable. Evidently (13) rather than 
this equation will provide the more tractable basis for developing a general method of 
solution by successive approximation. Note that in the case of uniform flow with W = C ,  
say, we have simply YP = Cy which means that s = $/C, and so the present equation 
merely reproduces Laplace's equation for +. 

$ Note that the second arbitrary constant arising in the general solution of (17) is simply 
an additional term to (18). An interesting precise application of this solution is to the prob- 
lem where a stream is at first confined between two rigid parallel boundaries at y = 0 and 
y = 1, and thereafter flows through a contraction or expansion into the space between two 
other such boundaries, say at y = a and y = b ,  not necessarily the same distance apart &B 

the h t .  For the parallel flow well downstream from the connexion, the choice of the two 
arbitrary constants in general allows both the boundary conditions y = a for s = 0 and 
y = b for s = 1 to be satisfied, and the solution then describes the spatial redistribution 
of the streamlines according to the dynamical requirement that the original vorticity 
distribution amongst them should be preserved. If defined as in (18), the constant A 
is then the gain in piezometric head between the initial and h a 1  parallel flows. 
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cannot be made to satisfy both the kinematical condition y = 1 + 7 for s = 1 and 
the dynamical condition (16); which accords with the well-known fact that no 
wave of extreme length can have both finite amplitude and permanent form. 
We note, however, that (16) alone would specify A = gy, and this suggests the 
following scheme for finding an approximate solution to the complete problem. 
The possibility of a solution in the form 

+ B ( X , S ) + . . .  
y = s  W ( s ) d s  

0 [ W2(ts) - 2A(x)]4 

is considered. Then, assuming the wave to be fairly long compared with depth 
and everywhere smooth, so that its slope r]’(x) is nowhere larger than a small 
fraction e of y(x) and that the successive differential coefficients y‘, y”, . . . diminish 
in order of magnitude at  least as rapidly as integral powers of e, we see from (16) 
that A = gy + O(B)  and hence, from (13), that B will not be greater than O(y”). 

[At this point the matter considered towards the end of $2  deserves to be 
recalled. For the expression (19) to be meaningful, it is necessary to assume that 
W2(s )  > 2.4 throughout the range 0 < s < I, and evidently this condition corre- 
sponds to the avoidance of a stagnation effect as explained in $ 2 .  According to 
the approximation (18), the velocity head along any streamline defined by s is 
precisely &W2(s) -A;  and since A = gy by (16), which means simply that the 
pressure is hydrostatic to this approximation, the conclusions of $ 2  are repro- 
duced exactly. The approximation represented by (19) does not admit such a 
precise physical interpretation; but it would seem that the assumption 
Wz(s)  > 2 A  is still essentially an expression of the physical assumption made in 
the last paragraph of § 2.1 

To put the schemeof approximation on a more definite basis, a well-established 
property of the irrotational solitary wave may be taken as a guide. It is reasonable 
to proceed on the assumption that this property also holds generally in the present 
case, and this can be checked a posteriori when an approximation to the wave 
profile is finally established. Let a denote the wave amplitude, i.e. the maxi- 
mum of the elevation y; and let b denote a measure of the length scale of the wave 
such that b = l /e,  where e is the small quantity specified above. Then, as the 
special property of solitary waves, we have that ab2 = O(1). [This important 
property was first recognized by Korteweg & de Vries (1895). More recently 
Ursell(l953) and Benjamin & Lighthill (1954) have discussed its various implica- 
tions, in particular its bearing on the matter of reconciling the existence of 
solitary waves with the prediction of ‘ non-linear shallow-water theory’ (e.g. 
see Stoker 1957, chap. 10) that positive long waves tend to steepen ahead of their 
crests and eventually form bores.] As in basic theories of the irrotational solitary 
wave (e.g. those of Boussinesq 1871 ; Rayleigh 1876; Keulegan &Patterson 1940; 
or Stoker 1957, $ 10.9)) the smallest terms to be retained in the present approxi- 
mation are O(ae2); and eventually, in accord with the property just mentioned, 
the same standing is given to O(a) and O(e2).  In  other words, we follow the over- 
all scheme indicated by 

7’2 = O(a2e2) = O(a3), 

and develop, in effect, a second-order approximation in a. 

7’’ = O(as2) = O(a2), etc., 
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mation if 
Substituting (19), we find that (13) is satisfied to the required order of approxi- 

W(S)  {Bs8 + A"(x) I,(S)} + ~ W ' ( S )  Bs = 0, (20) 

where 
= I;w). dZ 

First and second integrals of (20) can be obtained immediately: thus we get 

B(x, S) = - A"(x) (23) 

Hence the approximate solution of (13) satisfying the conditions y(x, 0) = 0 and 

where 

and where it is supposed that A has, in common with y, the property A(x) -+ 0 
forx-t  *co. 

The rest of the analysis is very straightforward in principle. The remaining 
boundary conditions to be satisfied are the two a t  the free surface, which con- 
stitute two relationships between the unknown functions A(x) and y ( ~ ) .  Elimina- 
tion of A(x) then gives an equation for the surface elevation y(x). 

First, putting (23) into the dynamical boundary condition (16), we obtain, to 
the order of approximation defined above, 

A - WZ( 1) a!( 1) A" = gy. 

A = S{T +BPI 7")7 

(25) 

(26) 

To the same order, this is equivalent to 

with B(1) = W2(l)a'(l) = so1 soy a d Y dZ. (27) 

Secondly, to make (23) satisfy the kinematical boundary condition y = 1 + 7 
for s = 1, we have 

-a( 1) A". W(s)ds s 0 [ W2(s) - 2A]* 
l + q  = 

When (26) is substituted for A in (28) and terms in y" (i.e. the smallest needing 
to be retained) are collected together, the result can be arranged as 

W ( s )  as 

0 [ W Z ( S )  - 2qyp. 
g{I2(1)/3(l)-a(1)}yP' = l + v -  1' 

To obtain a more easily interpretable equation for y, (29) is multiplied by y' and 
integrated, the arbitrary constant being determined by the condition 7' = 0 for 
7 = 0. The order of the double integration now arising on the right-hand side can 
be reversed, and so we get directly 

q{12/?( 1) -a( 1)) &p = 7 + &p+ - I' W(s)  [{ Wz(s) - 2gy)i - W(s)] ds. (30) 
g o  



The solitary wave on a stream with vorticity 107 

When the steps leading to this equation are reviewed, it is seen that the 
approximations have been concerned only with terms in the derivatives of y, 
and so far all operations involving 7 alone have been carried through exactly. 
Therefore, as a means to finding the maximum elevation of the wave (i.e. y = a 
for 7’ = 0) ,  this equation might still be useful even if Wz(s)  falls, in some part of 
the range 0 < s < 1, to small values not much larger than 297. However, pro- 
ceeding on the assumption that this is not the case, we may reduce the integral 
in (30) by taking the first fourtermsin the binomial expansionof [l- (2g7/ W2(s))]*. 
Thus we obtain {I,( 1) p( 1) - a( 1)) 7’2 = y2[{g-’ - 12( 1)) - g14( 1) 71, 

where 1. is the integral like (21) with integrand W-& instead of W-2. The error 
implied in this result is known to be O(y4) or 0(7”2). 

Equation (31) has the same form as the equation which gives a first approxi- 
mation to the profile of the irrotational solitary wave (cf. Lamb 1932, $252, 
equation (1 1)). To confirm that in all cases possible at present the wave is one of 
elevation only, as it is in the irrotational case, it  is necessary to prove that the 
coefficient of f 2  in (31) is always positive: the proof is a simple matter, but is 
conveniently deferred to Appendix I. In consequence of this coefficient being 
positive, the factor between the brackets [ I  in (31) must be positive, and it 
follows that 7 varies between zero and a maximum value a given by 

When the origin of x is taken beneath the wave crest, the appropriate solution 
of (31) is y = a sech2 (s/b),  (33) 

with (34) 

The last three equations are the principal deductions of this investigation. 
Equation (33) gives the general wave-form, which is unchanged by the presence 
of vorticity in the stream (cf. Lamb 1932, $252, equation (12)). Equation (32) 
gives the wave amplitude in terms of the wave speed c and the primary velocity 
distribution U(y). It is seen that the functional dependence of a on c generally 
is far more complicated than in the irrotational case (U  = const.) and is incapable 
of explicit inversion; however, as the more significant interpretation from a 
practical point of view, the equation can be regarded as an implicit relation for 
c in terms of a. Note that, for given a, equation (32) specifies two values of c, 
one necessarily positive value relating to propagation in the direction of the 
stream and another value, which may be negative, relating to propagation against 
the stream. Equation (34) gives the length scale of the solitary wave in terms of 
c and U(y). 

5. Discussion 
First we consider the extreme case of an infinitesimal wave. According to 

(32), the condition a -+ 0 implies that I , ( l )  = g-1 or, when this is written in full, 
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Further, (34) shows the length b to become indefinitely large; and so it is no sur- 
prise that (35) reproduces the formula obtained by Burns (1953) for the velocity 
of infinitesimal long waves. When U(y) = U (a constant), (35) gives the result 
obtained from the usual linearized theory for long waves: thus 

c = u+c,, (36) 

where Ci = g (i.e. = g*h in dimensional units). That is, the two possible 
velocities of the wave relative to the stream are simply C,, for propagation in 
the downstream and upstream directions respectively. For general U(y), (35) 
cannot be solved to give c explicitly; but Burns has established two significant 
general conclusions regarding the magnitudes of the values of c which satisfy 
(35). The first conclusion applies under the following restrictions on U(y), 
which do not exclude most cases with practical interest: 0 < U ( 0 )  < U(1); 
U‘(y) > O for O < y < 1; U”(y) < O for O < y < 1. It is that two values of c exist, 
one of which is greater than U(1) and the other of which is less than U(O).f 
Independently of the above restrictions, the second conclusion is that for non- 
uniform distributions U(y), the wave velocity relative to the mean flow is always 
greater in magnitude than Cot the value according to simplified theories ignoring 
the dynamical effects of vorticity. 

It appears also that the relative speed of a finite solitary wave on a non-uni- 
form stream is in general greater than the value given by potential theory. As a 
simple check on this property, let us take the case where the variation of U(y) 
is small compared with the velocity, say C = c- u, of the wave relative to the 
mean flow. Thus we write W(y) = -C+ u6(y), where 6(y) is the fractional 
variation of U(y) from its mean value 8, and we have (g/C) 6(y) < 1. Hence we 
obtain approximately, on expanding the integrand binomially, 

= C-2(1 + 3( O/C)2 A), say. (37) 

Here A is the mean square of 6, and we have used the fact that the mean of S is 
zero by definition. Similarly we get 

14(1) = C-4(1+ 10(8/C)2A}. (38) 

-f I suspect that this second theoretical result, c < U(O), is spurious when the stream is a 
long way supercritical-i.e. when a 9 C,,. It is true that when Oia % g a solution of (35) 
can always be found such that i = { U ( O ) - c } / ~  > 0: the integral in (35) is then almost 
entirely comprised near the lower limit, and the equation becomes in effect 1-2 N gz/g, 
so that a sufficiently small i can balance any value of a2/g however large. But the physical 
implications of this seem altogether ‘unnatural’. The streamlines are implied to follow 
the wave contour everywhere except very close to the bottom, where the velocity variation 
due to the wave is consequently very large, and in reality this sort of behaviour would 
place a severe restriction on the wave amplitude if separation were to be avoided. Burn’s 
theory was formulated in such a way as to rule out the possibility of separation, and the 
present result seems to be a concomitant of this artificial restraint rather than of any 
essential physical factor. It appears much more likely that when 0 9 C, a wave propa- 
gating against the stream will cause separation or some comparable effect indicated by a 
singularity in the linearized theory, and in fact the wave will be convected downstream a t  
an absolute velocity not much different from - C,,. 
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Substitution of (37) and (38) into (32) leads to 

a ( l + l O ( ~ ) z A ]  = ( g ) z ( ( g ) 2 - l - 3 ( g ) 2 A ] ;  (39) 

and, solving this equation for C2 to the first order in a, we obtain finally 

C2/C,Z = 1 + 3PzA + a( 1 + 4P2A), (40) 

where P = ajCo is the Froude number of the stream according to the usual 
definition. 

For a uniform velocity distribution, (40) reduces to 

cyc; = 1 +a, (41) 

which is Rayleigh’s formula for the wave velocity (cf. Lamb 1932, $252, equation 
(9)). Hence we see from (40) that the effect of vorticity in the stream is to increase 
the speed of a solitary wave above the ‘classical’ value given by (41). This 
increase comprises both an addition to the component independent of amplitude, 
as has already been shown by Burns, and also an augmentation of the influence 
of finite amplitude. 

It appears, however, that the effect of vorticity on the wave speed is quite 
small in most instances having any practical bearing. In  the first place, (40) 
shows the effect to be slight when the Froude number is small, as is commonly 
the case in large channels and rivers. Thus, on a stream flowing at only a small 
fraction of its critical velocity C,,, a solitary wave propagates at  a speed which is 
scarcely affected by the vorticity present, even if at some depths the vorticity 
U’(y)  has quite high values. This could be argued on physical grounds; but it is 
far from immediately evident analytically that the application of potential 
theory is well justified in this case. 

In  the second place, the factor A is rather small for velocity distributions 
typical of real open-channel flows. Consider, for example, the empirical power 
law u = (1+k)  Byk, (42) 

which, with k about +, approximates quite closely to the velocity distributions 
observed in turbulent flows along smooth channels. For the distribution (42) 
we find that A = kz/ ( l  + 2 k ) ;  hence A = 1/63 when k = 3. With the latter value 
of A, the ‘vorticity corrections’ in (40) would hardly have any practical signifi- 
cance unless the Froude number were fairly large. 

[Note incidentally that although (41) exactly reproduces Rayleigh’s formula 
for the velocity of the irrotational solitary wave, the step from (39) to (41) 
entails an approximation which does not arise in Rayleigh’s analysis. Writing 
(C/C,)Z for short as f, we recall that his result is derived as precisely f = 1 +a, 
without the need arising to neglect terms which are explicitly O(a2),  even though 
the apparent error is O(c4) which is actually equivalent to O(a2) (cf. Lamb, $252). 
On the other hand, (39) gives a = f(f- l), which leads to f = 1 +a--aZ- O(a3). 
Our omission of second- and higher-order terms in (41) is justified, of course, as 
being consistent with the over-all approximation-more precisely, because (32), 
and hence (39), was established by extracting the non-zero root from the cubic 
expression on the right-hand side of (31), which was derived only to O(a3). Thus, 
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in so far as they are both, strictly speaking, first-order approximations in a, 
Rayleigh’s result and the present one have the same analytical status (as have 
also the various other first approximations to the speed of the solitary wave 
which are to be found in the 1iterature-e.g. the result f = ea derived by Stoker 
(1957,s 10.9)). However, because of the feature of Rayleigh’s analysis mentioned 
above, there is some justification for extending the application of his formula 
f = 1 +a to waves for which a2 is not so small as to be negligible; and indeed it has 
been recognized since well before the turn of the century that this formula 
approximates very closely to the observed speeds of even fairly large solitary 
waves. The success of Rayleigh’s formula was explained precisely in the work of 
Long (1956). He showed the correct second-order approximation to be 
f =  I +  a - &u2, and in fact he derived some further coefficients of this expansion 
in a, which successively diminish in magnitude. Therefore, owing just to the 
smallness of the exact coefficients of a2 and higher powers, extrapolation of 
f = 1 +a to moderately high values of a still gives a good approximation, certainly 
better than the spurious second-order approximation obtained here from 
(39), or than Stoker’s result mentioned just above. In  Appendix I1 to this paper, 
Rayleigh’s method of analysis is adapted to the case of a solitary wave on a stream 
with constant vorticity, and the results serve as a check on the general results 
derived in $4. Since like its prototype this alternative analysis leaves an error 
which is only O(e4), no approximation explicitly O(a2) being required, the results 
obtained are presumably somewhat more accurate than those in $4. Unfortu- 
nately, Rayleigh’s method serves only for this one rather artificial example of 
flow with vorticity : it  is altogether useless for the general vorticity distributions 
dealt with above.] 

We next consider the results of $ 4  with regard to the length of the wave. 
From (32) and (34) it follows that 

For a uniform velocity distribution, we obtain very easily 12( 1) = P2, I,( 1) = C-4, 
B(1) = Q and a(1) = +F2; then (43) together with (41) gives 

ab2 = Q(C/C,)z = -( 2 l+a )  . (44) 

This result confirms the statement made several times earlier that ab2 = O(1) 
for the irrotational solitary wave. When the velocity distribution is not uniform, 
the correction to the result (44) is roughly of the same magnitude as the extra 
terms in (40) as compared with (41); but it is actually a rather complicated matter 
to obtain a general estimate of (43) to the same accuracy as (40). While avoiding 
these complications here, we can still assert, as a fact fairly evident from (43) 
(also Appendix I), that ab2 remains O( 1) for a variable V(y), a t  least when the 
mean-square variation A and the Froude number are not exceptionally large. 
This check on the order of magnitude of ab2 justifies the approximations on which 
the analysis towards the end of $ 4  was based. 

Finally, the relationships amongst wave amplitude, speed and length will be 
evaluated in the case of a stream with a constant vorticity G. As was mentioned 
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two paragraphs above, this example is analysed by a different method in Appen- 
dix 11, providing a check on the general results established in 9 4. For simplicity 
we take only the case U(y)  = Gy; however, cases in which the primary velocity 
distribution has the form U ( y )  = U(O)+Gy are effectively covered also, since 
clearly c - U(0)  will enter the results for these cases in precisely the same way M 

c for the present case. 
When W = Gy - c is substituted in the definitions of I.) 14, a and /3, the various 

integrals are easily evaluated and it is found that 

12( 1) /3( 1) - a( 1) = gc-2. 

Putting the first two of these expressions into (32) and reducing the result by 
means of the approximation 1/12( 1) = c(c - G) = g + O(a), we obtain 

The mean velocity of the primary flow is U = gG, and as before we write 
C = c - and C: = 9.  Then (46) gives, without further approximation, 

or (47) 

with F = UlC,,. The part of (47) which is independent of a agrees with a result 
found by Burns (1953, equation (33)) on the basis of his linearized long-wave 
theory. 

It is interesting to observe that in this example the exact formula (47) is the 
same as the approximate formula (40), which was derived on the assumption 
that the fractional deviation 6 ( y )  of W ( y )  from its mean value is small. We have 
now 6 ( y )  = 2y - 1, and hence A = +. Equation (47) is reproduced when this value 
of A is substituted into (40). 

We next use the results (45) to evaluate the right-hand side of equation (43) 
for ab2. Since (43) is established only as a first-order approximation in a, it  is 
consistent to use the zeroth-order result c(c - G) = g (see equation (46)) to simplify 
the right-hand side. Thus it is found directly that 

Again using c(c - G) = g and also writing G = 2i7 ,  G2/g = 4Fz, we obtain from 

Now, if the velocity of the stream is negligibly small compared with the wave 
velocity, the right-hand side of (49) becomes unity; and again this is the result 
which is found by potential theory when the dynamical effects of vorticity are 
ignored. Therefore, to reveal the effect of vorticity on the length of the solitary 
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wave, for any given amplitude, one has merely to compare the value of the 
expression (49) with unity. 

To find the ratio VIc ( = A, say) appearing in (49)) we observe that the equation 
c(c-@) = g can be rearranged to give h2+ 2FzA- F2 = 0. Hence we have 
h = f F J ( F 2  + 1) - F2, where the plus sign refers to downstream propagation 
(c > 0) and the minus sign to upstream propagation (c < 0). Thus (49) becomes 

1 + 2P2 T 2F4(F2+ 1) 
1 +*pi ~- ’ &b2 = 

where the alternative sign is minus for downstream and plus for upstream propa- 
gation. This result shows that, in the downstream case, gab2 < 1 for all F > 0, 
so that the effect of vorticity is to shorten the wave. In  the upstream case, 
gab2 > 1 for all F > 0, so that vorticity lengthens the wave. For example, take 
F = 0.5. Then it is found from (50) that gab2 = 0.29 and 1-96, respectively, for 
downstream and upstream propagation. In  the first case a solitary wave of 
given amplitude is shorter by a factor J(0.29) = 0.54 than it would be on a 
uniform stream with the velocity 0; and in the second case the wave is longer 
by a factor 1.40. 

6.  Conclusion 
The foregoing analysis provides a general means for calculating the properties 

of a solitary wave on running water when the flow velocity has any given vertical 
distribution, provided only that the limitations due to stagnation effects as 
explained in Q 2 do not arise. These limitations are avoided entirely whenever the 
stream is more than marginally subcritical, and otherwise relate only to the case 
of propagation against the stream (i.e. as in figure 1(a)  when the upstream 
propagation velocity - c  is so far reduced, by convection of the wave down- 
stream, as to make W(y) = U(y) - c vanish for some y in (0, 1)); moreover, the 
question of their arising at or even considerably above the critical condition is a 
somewhat arbitrary one, depending on how much velocity of slip at  the channel 
bottom is allowed as a feature of the theoretical model for the primary flow. 
As was suggested earlier, however, the possibility of finding solutions represent- 
ing flows which separate from the channel bottom under the wave is interesting 
in view of the likelihood that such flows do actually occur sometimes; and this 
aspect of the problem might well be worth pursuing, though methods rather dif- 
ferent from the present would be necessary. 

On the theoretical side, perhaps the main contribution of this paper is merely 
to have established that solitary waves can occur upon rotational flows under 
gravity as well as in the more idealized circumstances assumed by previous 
theories. This general issue has not been faced up till now, presumably owing to 
the lack of a tractable perturbation method which can account for waves of 
finite amplitude. The present method is believed to be novel, and it may be of 
interest as regards other possible applications. 

On the practical side, it  is not seriously proposed that the general formulae 
presented here might replace those familiar ones derived from potential theory 
which are used by hydraulic engineers to estimate solitary-wave properties. 
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Indeed, the main service of this analysis is to have shown precisely that the pre- 
sence of vorticity in the stream has little effect on the wave in many circumstances 
typical of real open-channel flows, so that theresults according to potential theory, 
which represents the stream as having a uniform velocity equal to the mean of the 
actual distribution, will often apply with good accuracy. It has occasionally been 
attempted (e.g. by Boussinesq 1877) to justify this application of potential theory 
by careful physical reasoning, but the matter is generally taken for granted rather 
carelessly in text-books on hydraulics. Nevertheless, there may well be cases 
where the effects of vorticity would be significant in relation to a practical 
estimate of the wave properties; and it is worth emphasizing that these effects 
become enlarged when a stream is near the critical condition. In  fact, one im- 
portant practical application of solitary-wave theory is to the large standing 
waves that often arise in just these circumstances. If the reach of the channel over 
which the nearly critical condition holds is fairly long, these waves are likely 
to take the form of a periodic train, but each wave-particularly the leading 
one-may approximate closely to a solitary wave (see Benjamin & Lighthill 
1954). 

We note finally that the present analysis would, with slight modification, 
account for a class of periodic waves of finite amplitude corresponding to the 
‘cnoidal’ waves which were discovered by Korteweg & de Vries (1895) upon 
generalizing Rayleigh’s analysis of the irrotational solitary wave (see Lamb 
1932, $253; also Benjamin & Lighthill 1954). To develop a theory of these 
waves, the essential point of departure is the step from (29) to (30). A t  present 
the condition 7‘ = 0 for 7 = 0 is imposed. If this condition were relaxed and the 
constant were left undetermined, the outcome would be an equation like (31) 
except that the cubic in 7 on the right-hand side would in general have three 
distinct roots: one particular value of the arbitrary constant would, of course, 
recover the present case characterized by the double root 7 = 0. The modified 
form of equation (31) has a solution 7 = B + ( A  -B)  on2 (x/L; k), where the 
modulus k of the elliptic function is proportional to the square root of the wave 
amplitude A - B, and where the constant L equals the wavelength divided by the 
period 2K(k) of the elliptic function (cf. Lamb 1932, 5 253 ; Benjamin & Lighthill 
1954, $3).  It appears a considerable task, however, to sort out the details of this 
result, such as to evaluate the constants A ,  B and L in terms of specific physical 
quantities, and the matter may suitably be left for subsequent study. 

Appendix I 
The object here is to show in general that 

when .&(l), a(1) andB(1) are defined by (21), (24) and (27) respectively. 

(0, l), therefore 
Since by definition W ( 2 )  is a real monotonic function of 2 in the interval 

12( Y )  = W - y Z )  d 2  
/OY 

Fluid Mech. 12 
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increases monotonically with Y in (0, I), and a fortiori 

P ( X )  = JX12(Y)  W2( Y ) d Y  
0 

increases monotonically with X in (0, 1). Thus, writing y ( X )  = @(l)-F(X), we 
have that 

if 0 < X < 1. Hence it is seen that the quantity 

Y ( X )  ’ 0 

- JO1KX) W--2(X) CEX = so’ y ( X )  W - y x )  dX 

must be positive, since the integrand y ( X )  W-Z(X) is positive over the range of 
integration . 

Appendix II 
Here we return to the case of a stream with constant vorticity, considered at 

the end of $6, and we outline an alternative analysis adapting the method used 
by Rayleigh (1876) and Lamb (1932, $252) for the irrotational solitary wave. 
It is assumed that W = Gy-c, where G is constant. Then, according to (5), 
5 = G is the same everywhere in the flow, and we have 

P = WY”P1, (A 1) 

where $l is a harmonic function which vanishes on the bottom y = 0 and which, 
in view of (a), has the property 7,bl --f - cy for z -+ 5 co. Hence, introducing the 
expression for a harmonic function used by Rayleigh, we may write 

(A 2 )  
1 

7,b = +Gy2+yf(z)-gySfC(z)+ ..., 

wheref(z) is as yet arbitrary, to be determined by the boundary conditions at 
the free surface y = 1 + 7 = 6, say. The analysis proceeds approximately by 
neglecting quantities which are O(C)~; thus only the first two terms in this expan- 
sion of 7,bl are retained. 

In  the present case the kinematical condition (2) takes the form 

$(z,E) = Y(l) = + G - c .  (A31 

When (A2) is substituted into (A3) and the equation is solved for f(z) to the 
order of approximation specified above, the result is 

-+G((+&f2C’‘). (A 4) 

Next, the dynamical boundary condition (7) gives 

(c-G)’-2g([- 1) = ($:+7,bi),=r = (f+at)z-(f+Gt)t2f”+5af’2. (A5) 
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Eliminatingf(z) from (A6) by means of (A4), we obtain 

1 25'' 
(c- G)'- 2gg-  1) = [c- & G ( l +  E 2 ) ] 2  ( p + j % )  
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6'' 
E 

-- [&(c - +G)'+ &(c - 4G) Gt' - $#2[2]. (A 6) 

If this equation is multiplied by 
determined so as to make E' = 0 for 5 = 1, the result is 

and integrated, the arbitrary constant being 

(C-G)'(5-1)-g(f;-1)' = C' 

+ $G'( &g3 + 25 - [c- $G( 1 + 52)]2, 

or, on rearrangement, 

[C - &G( 1 + C2)]2 t'' = 3(5 - 1)' (c' - CG - - liG'(5' + 25- 3) -st>. (A7)  

Since the approximations leading to (A7) consist only in neglecting O(s4), 
no power of 7 = 5-  1 being neglected, this equation is presumably rather more 
accurate than the corresponding equation (31) for the solitary wave on a stream 
with general velocity distribution. As has been seen earlier, however, (AT) 
again indicates that O(e2) is equivalent to O(7);  and accordingly it is consistent 
to approximate further the left-hand and right-hand sides of the equation, to 
O(r2e2) and O(r3)  respectively. Thus one obtains 

(c- G)a 7" = 3r2(c(c - G) - g - (9 + &Gz) v}. (A 8) 

Comparing this with (31), we have that the wave amplitude is 

C(C - G) - g 
c C =  

g++G2 ' 
in agreement with (46); and we find that 

4 ( ~  - G)' 
3 g + G 2 '  

ab2 = 

in agreement with (48). 
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